Double-Diffusive Interleaving. Part I: Linear Stability Analysis

1985 ◽  
Vol 15 (11) ◽  
pp. 1532-1541 ◽  
Author(s):  
Trevor J. McDougall
2014 ◽  
Vol 26 (12) ◽  
pp. 127101 ◽  
Author(s):  
Sukhendu Ghosh ◽  
R. Usha ◽  
Kirti Chandra Sahu

2014 ◽  
Vol 762 ◽  
pp. 156-195 ◽  
Author(s):  
P. Burns ◽  
E. Meiburg

AbstractWhen a layer of particle-laden fresh water is placed above clear, saline water, both double-diffusive and Rayleigh–Taylor instabilities may arise. The present investigation extends the linear stability analysis of Burns & Meiburg (J. Fluid Mech., vol. 691, 2012, pp. 279–314) into the nonlinear regime, by means of two- and three-dimensional direct numerical simulations (DNS). The initial instability growth in the DNS is seen to be consistent with the dominant modes predicted by the linear stability analysis. The subsequent vigorous growth of individual fingers gives rise to a secondary instability, and eventually to the formation of intense plumes that become detached from the interfacial region. The simulations show that the presence of particles with a Stokes settling velocity modifies the traditional double-diffusive fingering by creating an unstable ‘nose region’ in the horizontally averaged profiles, located between the upward-moving salinity and the downward-moving sediment interface. The effective thickness $l_{s}$ ($l_{c}$) of the salinity (sediment) interface grows diffusively, as does the height $H$ of the nose region. The ratio $H/l_{s}$ initially grows and then plateaus, at a value that is determined by the balance between the flux of sediment into the rose region from above, the double-diffusive/Rayleigh–Taylor flux out of the nose region below, and the rate of sediment accumulation within the nose region. For small values of $H/l_{s}\leqslant O(0.1)$, double-diffusive fingering dominates, while for larger values $H/l_{s}\geqslant O(0.1)$ the sediment and salinity interfaces become increasingly separated in space and the dominant instability mode becomes Rayleigh–Taylor like. A scaling analysis based on the results of a parametric study indicates that $H/l_{s}$ is a linear function of a single dimensionless grouping that can be interpreted as the ratio of inflow and outflow of sediment into the nose region. The simulation results furthermore indicate that double-diffusive and Rayleigh–Taylor instability mechanisms cause the effective settling velocity of the sediment to scale with the overall buoyancy velocity of the system, which can be orders of magnitude larger than the Stokes settling velocity. While the power spectra of double-diffusive and Rayleigh–Taylor-dominated flows are qualitatively similar, the difference between flows dominated by fingering and leaking is clearly seen when analysing the spectral phase shift. For leaking-dominated flows a phase-locking mechanism is observed, which intensifies with time. Hence, the leaking mode can be interpreted as a fingering mode which has become phase-locked due to large-scale overturning events in the nose region, as a result of a Rayleigh–Taylor instability.


2012 ◽  
Vol 42 (5) ◽  
pp. 840-854 ◽  
Author(s):  
J. R. Carpenter ◽  
T. Sommer ◽  
A. Wüest

Abstract In this paper, the authors explore the conditions under which a double-diffusive interface may become unstable. Focus is placed on the case of a cold, freshwater layer above a warm, salty layer [i.e., the diffusive convection (DC) regime]. The “diffusive interface” between these layers will develop gravitationally unstable boundary layers due to the more rapid diffusion of heat (the destabilizing component) relative to salt. Previous studies have assumed that a purely convective-type instability of these boundary layers is what drives convection in this system and that this may be parameterized by a boundary layer Rayleigh number. The authors test this theory by conducting both a linear stability analysis and direct numerical simulations of a diffusive interface. Their linear stability analysis reveals that the transition to instability always occurs as an oscillating diffusive convection mode and at boundary layer Rayleigh numbers much smaller than previously thought. However, these findings are based on making a quasi-steady assumption for the growth of the interfaces by molecular diffusion. When diffusing interfaces are modeled (using direct numerical simulations), the authors observe that the time dependence is significant in determining the instability of the boundary layers and that the breakdown is due to a purely convective-type instability. Their findings therefore demonstrate that the relevant instability in a DC staircase is purely convective.


1995 ◽  
Vol 303 ◽  
pp. 1-21 ◽  
Author(s):  
J. Tanny ◽  
C. C. Chen ◽  
C. F. Chen

The effect of surface tension on the onset of convection in horizontal double-diffusive layer was studied both experimentally and by linear stability analysis. The experiments were conducted in a rectangular tank with base dimension of 25×13 cm and 5 cm in height. A stable solute (NaCl) stratification was first established in the tank, and then a vertical temperature gradient was imposed. Vertical temperature and concentration profiles were measured using a thermocouple and a conductivity probe and the flow patterns were visualized by a schlieren system. Two types of experiments were carried out which illustrate the effect of surface tension on the onset of convection. In the rigid–rigid experiments, when the critical thermal Rayleigh number, RT, is reached, large double-diffusive plumes were seen simultaneously to rise from the heated bottom and descend from the cooled top. In the rigid–free experiments, owing to surface tension effects, the first instability onset was of the Marangoni type. Well-organized small plumes were seen to emerge and persist close to the top free surface at a relatively small RTM (where subscript M denotes ‘Marangoni’). At larger RTt > RTM (where subscript t denotes ‘top’) these plumes evolved into larger double-diffusive plumes. The onset of double-diffusive instability at the bottom region occurred at a still higher RTb > RTt (where subscript b denotes ‘bottom‘). A series of stability experiments was conducted for a layer with an initial top concentration of 2 wt% and different concentration gradients. The stability map shows that in the rigid–free case the early Marangoni instability in the top region reduces significantly the critical RT for the onset of double-diffusive convection. Compared with the rigid–rigid case, the critical RT in the top region is reduced by about 60% and in the bottom region by about 30%. The results of the linear stability analysis, which takes into account both surface tension and double-diffusive effects, are in general agreement with the experiments. The analysis is then applied to study the stability characteristics of such a layer as gravity is reduced to microgravity level. Results show that even at 10 −4g0, where g0 is the gravity at sea level, the double-diffusive effect is of equal importance to the Marangoni effect.


Sign in / Sign up

Export Citation Format

Share Document